午夜av成人-激情综合一区二区三区-四虎影在永久在线观看-亚洲爱爱网站-人人爽人人澡人人人妻-亚洲欧美日韩国产综合

歡迎光臨~泰州巨納新能源有限公司
語言選擇: 中文版 ∷  英文版

硫化物晶體

  • PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)
  • PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)
  • PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)
PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)

PbSnS2 硫化錫鉛(Synthetic Lead Tin Disulfide)

Synthetic single crystal Tin lead disulfide (PbSnS?) is a special member of layered transitional metal dichalcogenides. Similar to MoS?, MoSe?, WS?, and WSe?, adjacent layers are weakly coupled to each other and can be easily exfoliated (see images) and isolated down to monolayers. In the bulk it possesses 1.45 eV band gap. Physical properties of monolayer PbSnS? are unknown both theoretically and experimentally. The first monolayer PbSnS? has been synthesized at our facilities in late 2012 and the bulk crystals are perfected after two (2) years of development process.

Crystals are up to 10mmx10mm in size and highly crystalline. Ready for exfoliation to yield monolayers.

Differences between the synthetic and the natural PbSnS?;

- Purity and magnetic properties: The synthetic PbSnS? is 99.995% pure. Diamagnetic semiconductor. The natural PbSnS? is 98-99% pure and contains various impurities including anti-ferromagnetic iron oxides, ferromagnetic iron and nickel complexes. Therefore, natural PbSnS? is ferromagnetic semiconductor.

- Defect profile and Raman spectrum: The Synthetic PbSnS? contains least amount of defects. Therefore, synthetic PbSnS? has much sharper Raman peaks.

- Sub-band gap: Natural PbSnS? possesses defect induced sub-band gaps and enhanced exciton-phonon interaction.

- Mechanical differences: Natural PbSnS? is more fragile compared to synthetic PbSnS?. The mechanical stiffness and fragility stem from the increased density of defects.

- Electrical properties: Natural crystals have smaller grain sizes and the transport is mostly dominated by the variable-hopping and grain boundary scattering. Synthetic materials possess conventional lightly-doped semiconductor behavior.

用手機掃描二維碼關閉
二維碼